Import

In this part of the book, you’ll learn how to import a wider range of data into R, as well as how to get it into a form useful for analysis. Sometimes this is just a matter of calling a function from the appropriate data import package. But in more complex cases it might require both tidying and transformation in order to get to the tidy rectangle that you’d prefer to work with.
在本书的这一部分中,你将学习如何将更广泛的数据导入 R,以及如何将其整理成可用于分析的形式。有时,这只是调用相应数据导入包中的一个函数的问题。但在更复杂的情况下,可能需要进行整理和转换,才能得到你更喜欢使用的整洁矩形数据。

Our data science model with import highlighted in blue.
Figure 1: Data import is the beginning of the data science process; without data you can’t do data science!

In this part of the book you’ll learn how to access data stored in the following ways:
在本书的这一部分,你将学习如何访问以下列方式存储的数据:

There are two important tidyverse packages that we don’t discuss here: haven and xml2. If you’re working with data from SPSS, Stata, and SAS files, check out the haven package, https://haven.tidyverse.org. If you’re working with XML data, check out the xml2 package, https://xml2.r-lib.org. Otherwise, you’ll need to do some research to figure which package you’ll need to use; google is your friend here 😃.
有两个重要的 tidyverse 包我们在这里不讨论:haven 和 xml2。如果你正在处理来自 SPSS、Stata 和 SAS 文件的数据,请查看 haven 包,https://haven.tidyverse.org。如果你正在处理 XML 数据,请查看 xml2 包,https://xml2.r-lib.org。否则,你需要做一些研究来找出你需要使用的包;谷歌是你的好朋友 😃。